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We investigate the linear-response conductance through a pair of coupled quantum dots. The
conductance spectrum under ideal conditions is shown to consist of two sets of twin peaks whose
locations and amplitudes are determined by the interdot coupling and the intradot charging. We
will show that the qualitative features of the spectrum survive against experimental nonidealities
such as (1) detuning of the individual dots, (2) interdot charging, (3) inelastic scattering, and (4)
multiple lateral states. The effect of higher lateral states depends strongly on the nature of the
interaction potential, screening lengths, and exchange terms, but the lowest set of twin peaks is

largely unaffected by these details.

I. INTRODUCTION

Single quantum dots have been widely studied and a
clear understanding of the transport through these artifi-
cial atoms has emerged.! Coupled quantum dots could be
considered as artificial molecules and their study could
open up new physics in which electron charging and
electron coherence play a significant role. Most studies
of coupled quantum dots include only charging.?”” Few
studies®® have been performed on coupled quantum dots
in which coherence and charge quantization are consid-
ered simultaneously.

The purpose of this paper is to calculate the conduc-
tance spectrum including coherence and charging interac-
tions. Qur approach is very similar to that developed by
Beenakker!® and Meir et al.l! for single dots. The main
difference is that we calculate the exact many-body states
of the “molecule” rather than a single “atom.” We start
with the ideal case of (1) identical dots, (2) no interdot
charging, and (3) a single spin-degenerate lateral state in
each dot. We then examine some effects of nonidealities
that are inevitable in an experiment. Due to numeri-
cal limitations, our method can be applied to a maxi-
mum of 12 single-particle states, which is not sufficient

FIG. 1. Proposed experimental setup for a sidewall-gated
small-cross-section vertical triple barrier structure. Inset
shows the simplified conduction band in the central region in
the growth direction. Fermi energy and lateral confinement
can be changed with the gate voltage V.
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to describe present day lateral structures. However, im-
proved lithographic techniques will eventually allow lat-
eral structures with fewer electrons. Using present day
technology vertical structures can be fabricated having
very few electrons.??71% Such structures typically do not
have a gate electrode!®'” which is necessary for linear-
response measurements. However, using shadow evapo-
ration a sidewall gate could be fabricated as shown in
Fig. 1.

A system of two coupled quantum dots with one
doubly spin-degenerate single-particle state in each dot
(2x2 single-particle states) will exhibit four conductance
peaks.'®'9 These peaks coincide with the fluctuation of
the equilibrium number of electrons in the quantum dot
as transitions 0—1, 1—2, 2—3, and 3-94 occur. These
transitions of electron numbers in the quantum dot are
expected to occur at characteristic Fermi energies that
are determined by the transition energies of the many-
body states in the quantum dot. The coupling strength
t between the quantum dots and the charging interac-
tion energy U in a single quantum dot determine the
separation between the four conductance peaks. Here we
show that the expected double set of twin peaks in the
conductance determined by the characteristic energies ¢
and U survives against experimental nonidealities such
as (1) detuning of the bare energy levels of the quan-
tum dots due to variations in confinement, (2) interdot
interactions, (3) multiple lateral states with off-diagonal
interactions, and (4) inelastic scattering.

II. MODEL

We consider a system described by a Hamiltonian with
four terms: the coupled quantum dot (Hp), the charge
interaction in the coupled quantum dot (Hc¢), the leads
(Hyz), and the coupling of the leads to the quantum dot
(Hr).

H =Hp + Hc + Hy + Hr, (1a)
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The variables & and ¢ symbolize states in the leads
and the ith quantum dot, respectively. a and 8 are
spin indices, and m,n,p,q are lateral quantum numbers.
Usi;m,n,p,q tepresents the intradot, lateral-state-dependent
repulsion in dot 7. The interdot charge interaction and
interdot coupling between the two quantum dots are rep-
resented by Wo, , and ¢, respectively. The tunneling
matrix element V2, (VE.) connects dot 1 (2) to the left
(right) lead. We assume the lateral confinement to be
homogeneous and do not consider effects due to subband
mixing?® and energy dependence of coupling.

We assume the coupled quantum dots to be weakly cou-
pled to the leads, such that Hp can be treated to first
order in perturbation for single-particle transitions. We
evaluate the Hamiltonians Hp and Heg describing the
decoupled “molecule” in the subset of constant numbers
of electrons via direct diagonalization?!:23 in the basis of
Slater determinants. We treat the coupled quantum dot
as a single coherent system and use a conductance for-
mula'®!? which was developed for single quantum dots.
However, the transition rates are more complicated in
our case, since the spatial structure of the interacting
eigenstates is more complicated:

Nax 7L, TR
nij" nij eq
¢= ZZI‘{::J'*—FftJ ot
[1 f( n,g n-—l,j —IL)] ] (2)

where I'%;. indicate transitions from the ith n-particle
state to the jth (n—1)-particle state via transitions
through the left barrier. P.% indicates the equilibrium
occupation of the initial state (n,7) with eigenenergy E,, ;
calculated with

1 1
eq _ < - o
P= 7 exp[ *aT (B n,u)] , (3a)
Z= nEi exp [—ﬁ“ (Bni — n#)] ) (3b)

where u is the chemical potential in the leads. The
electronic states in the leads are assumed to be one-
dimensional (1D) subbands filled according to Fermi-
Dirac statistics and (1—f) indicates the probability to
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find an empty state in the lead, which satisfies the energy
conservation requirement for the (n,7)—(n—1, ) transi-
tion. We assume the temperature to be high enough such
that we can neglect the Kondo effect due to correlations
of electrons in the leads with electrons in the central sys-
tem.

III. RESULTS
A. Ideal case

We start with the ideal case of a system consisting only
of a single lateral, doubly spin-degenerate state in each
quantum dot. The conduction band we assume for our
analysis is depicted in the inset of Fig. 1. We assume
the interdot charging to be zero (W=0) and assume the
single-particle ground states in the two dots to be aligned
with each other (¢;=¢=¢). The one-particle ground state
of the coupled system is the bonding state with eigenen-
ergy Ey=e—t. Throughout this work we consider the case
where the charging energy U is larger than the interdot
coupling t. Consequently, electrons tend to distribute
themselves throughout the structure to avoid the on-site
charging energy and the two-particle ground state has
an eigenenergy of E,=2¢+O(t?). The third electron has
to “pay” charging energy in one of the quantum dots
and the ground state of the three-particle ground state
is E3=3e¢4+U—t. The fourth electron fills up the glven
orbitals and the e1genenergy of the four-particle many-
body ground state is Ey4=4e+2U. Single-particle transi-
tions which alter the number of electrons in the quantum
dot can therefore occur at four particular Fermi energies:
e—t,et+t,et+U—t,and e+ U +t¢.

We have calculated the conductance spectrum for
energy-independent tunneling matrix elements ka;/ B
with a single-particle single-barrier transition rate I'=1
peV assuming that €==30 meV, t=1 meV, and U=5 meV.
The resulting conductance G (solid line) is depicted in
Fig. 2 with the corresponding average number of elec-
trons in the quantum dot () (dashed line), as a func-
tion of Fermi energy. Note that the conductance peaks
occur whenever the number of particles changes. There
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FIG. 2. Conductance G (solid line) calculated for a system
of coupled, symmetric quantum dots as a function of Fermi
energy Er. Conductance peaks are grouped by charging en-
ergy U and coupling energy t. Transitions in the total number
of electrons N (dashed line) in the quantum dot coincide with

the conductance peaks.
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are four.conductance peaks corresponding to the filling of
the quantum dot system with four electrons. We obtain
two sets of twin peaks where the “twins” are separated
by the interdot coupling energy ¢ and the sets are sepa-
rated by the intradot repulsion U. The upper two peaks
are the energetic mirror image of the lower two taken at
midgap, which is due to electron-hole symmetry in the
problem. Note that the second peak is smaller than the
first peak not due to any energy dependence of the tun-
neling rate, but due to the spatial and energetic structure
of the many-body states in the dot.1®

B. Detuning

Nonuniformities in the lateral or the longitudinal con-
finement of the quantum dots will lead to some detuning
A of the single-electronic ground states between the two
dots (inset in Fig. 3). Figure 3 compares the calculated
conductance for the coupled quantum dot system we dis-
cussed above for three different detunings (a) A=0, (b)
A=U, and (¢) A =2U. The conductance G is plotted
on the same linear scale in all three plots. Note that the
first and fourth peak decrease in amplitude while the sec-
ond and third peak are roughly unchanged in (a) and (b).
Not only do the amplitudes of the four peaks change, but
also their locations, indicative of changes in the excita-
tion spectrum of the coupled quantum dots.
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FIG. 3. Conductance spectra G (solid line) for different
degrees of detuning A of the second quantum dot against the
first quantum dot (inset). (a)—(c) show G on the same scale
for A=0, A=U, and A=2U in arbitrary units. Dashed line
shows the average number of electrons in the first quantum

dot ({n1)).
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Figure 4 analyzes the conductance peak spectrum (a)
and amplitudes (b) separately as a function of detuning
A. The amplitudes of peaks 1 and 4 {dashed lines) are
equal as well as the amplitudes of peaks 2 and 3 (solid
line). As the single-particle eigenenergy of the decou-
pled dots is raised in the second quantum dot, the first
electron tends to localize in the first dot of the coupled
system and the localization increases with detuning. The
eigenenergy of the composite single-particle ground state
changes [Fig. 4(a)] from F;=e—t=29 meV (A =0) to
E;=€=30 meV (A = o0). As a result of the decreas-
ing probability of finding the electron in the right well,
the amplitude of the first conductance peak [Fig. 4(b)]

decreases rapidly with detuning (o ) For a symmet-

. ric structure without detumng we ha.ve equal probability

to find an electron in the léft or the right quantum dot
[{n1)=0.5 in Fig. 3(a)]. Figure 3(b) shows the average
number of electrons in quantum dot 1 ((n1)) at a detun-
ing of A=5 meV as a function of the Fermi energy. The
average of S 1 past the first conductance peak indicates
the localization of the first electron in quantum dot 1.
Formally we denote the many-body states in an occu-
pation number notation of the form |ni4,n1y,n24,72}),
where the index 1 (2) refers to the left (right) dot and 1, |
are spin indices. Using this notation we find that the one-
particle ground state is twofold degenerate with one up-
spin and one down-spin state. We denote them (neglect-
ing the normalization) as |¢34)=|1,0,0,0) — «|0,0,1,0)
and |#1) =0,1,0,0) — ¢|0,0,0,1), where v < %. The
probability to find an electron in dot 2 and the coupling
to the right lead by transitions into state |0,0,0,0) is
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FIG. 4. (a) Conductance peak spectrum as a function of
detuning. A =0 shows two sets of twin peaks at 29,30 and
35,36 meV for €g=30 meV, U=5 meV, and t=1 meV. An-
ticrossing is visible at A = U = 5 meV. (b) Amplitudes of
conductance peaks as a function of detuning. Dashed lines
correspond to the first and fourth peaks in (a). Solid lines
correspond to the second and third peaks in (a). Interdot
coupling ¢ is a parameter. Second and third peaks are almost
independent of detuning A if ¢ is large enough.
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proportional to 2.

Intuitively one expects the second conductance peak
to exhibit the same behavior with detuning as the first
peak. Given small detuning, A « U, the two-particle
ground state is given®® by |¢5) = |1,0,0,1)+]0,1,1,0)
(neglecting normalization). Transitions through the left
barrier (e.g., {¥11|c1y|¥2) = a, where cy4 is the up-spin
destruction operator in dot 1) are limited by the localiza-
tion of an electron in dot 1 and the weak leakage to dot
2. This is one possible current contribution to the sec-
ond conductance peak. The intradot charge interaction
introduces a resonance feature (at A =U) that allows for
a second transport process through the quantum dot at
even higher detuning. The argument is as follows. When
A =U we have a degeneracy of the three?® basis states
|1,0,0,1), |0,1,1,0), and |1,1,0,0), which make up the
ground state. The basis state |1,1,0,0) can couple well
with the one-particle ground states |y;4) ~|1,0,0,0) and
[h1y)=2]0,1,0,0) via transitions through the left barrier.
The basis states [1,0,0,1) and |0,1,1,0) are well cou-
pled to |t14) and |¢4;) by transitions through the right
barrier. The two-particle ground state is therefore well
coupled to the one-particle ground state via transitions
through the left and the right barrier and the second con-
ductance peak is large. Figure 3(b) indicates an average
numper of electrons in the first quantum dot of <1.5 in
the case of equal detuning and intradot charging. A=U
is the transition region where the “energetic payment”
to reside in a higher single-particle level in dot 2 or the
charging energy against the first electron in dot 1 are
equal. This means that the second electron is actually
50% of the time in the first quantum dot “next” to the
localized first electron.

Increased detuning where A > U will tend to localize
both electrons in quantum dot 1 and the ground state
will consist mostly of basis state |1,1,0,0). Figure 3(c)
indicates an average number of electrons of S 2 out of
two electrons total in quantum dot 1 past the second
conductance peak. The conductance will then decrease
rapidly with A since no electrons are in quantum dot 2
to be coupled to the right, similar to the behavior of the
first peak amplitude.

The region of intermediate detuning where the detun-
ing is smaller than the intradot charging energy (0 <
A < U) is determined by a “competition” between the
two transport processes discussed above. The first pro-
cess is dependent on the leakage o « i— of the one-
particle state into dot 2. The second process is de-
pendent on the mixing of the |1,1,0,0) basis state inta
the two-particle ground state. The two-particle ground
state is a spin O state and can be denoted as®® [i3) =
|1,0,0,1)+]0,1,1,0)+8|1,1,0,0), neglecting normaliza-
tion, where S ﬁi_A‘ for A «U. Transition contributions

due to acx £ (localization of the first electron) decrease

with detuning and contributions due to 8= Ui—A (mixing
of |1,1,0,0)) increase with detuning. Both contributions
are proportional to the interdot coupling ¢, and the am-
plitude of the second conductance peak appears to be
almost independent of detuning if the strength of the in-
terdot coupling is strong enough [Fig. 4(b)].
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The third and fourth conductance peaks can be most
easily understood by the formal electron-hole symmetry
in our notation. Every “electron” Slater determinant
(e.g., |1,0,0,0}) has a complementary “hole” Slater de-
terminant (e.g., |0,1,1, 1)). The same arguments that we
have given for the first two conductance peaks in terms
of electron localization can be extended to arguments fol-
lowing hole localization. We can explain the first conduc-
tance peak with the transition of the first electron into
the system from the |0, 0,0, 0) state; similarly, we can ex-
plain the fourth conductance peak with the transition of
the first hole into the system from the |1,1,1,1) state.
Conductance peaks 1 and 4 have therefore the same am-
plitude as functions of A (see Fig. 4). Indeed, we find
the amplitudes of peaks 2 and 3 to be the same functions
of A.

It is interesting to note that the conductance peaks co-
incide with fluctuations in the total number of particles
in the quantum dot. Given the discrete energy spec-
trum of this system, the total number of particles always
increases by 1 (see Fig. 2) with the same slope at ev-
ery step (assuming small temperatures) independent of

the detuning of the quantum dots (Q%l is the same for
all transitions.). The conductance amplitude, however,
is dependent on the spatial structure of the composite
many-body eigenstates and depends on the detuning.
Figure 4(a) shows the spectrum of the excitation ener-
gies of the coupled quantum dot as a function of detun-
ing. An anticrossing of the second and third excitation
is visible at a detuning of A=U where the localization
of one electron changes to the localization of two elec-
trons in one quantum dot. We can see [Fig. 4(b)] how
conductance peak 1 (4) decreases rapidly with A due to
localization of the first electron (last hole) and peak 2
(3) decreases after localization of two electrons (holes).
Although the relative amplitude and the spectrum of the
conductance peaks change with detuning we still expect
the double set of twin peaks to be observable. It is impor-
tant to design the experimental structure such that the
coupling between the two quantum dots is strong enough
to compensate for detunings, which are inevitable due to
inhomogeneities in the confinement. ‘

C. Interdot charging

Another physical process that may distort the dou-
ble set of twin peaks in the conductance spectrum is in-
terdot charging. With significant charge interaction® it
seems reasonable that a strongly localized wave function
in one quantum dot causes a non-negligible potential in
the neighboring quantum dot. Figure 5 shows the con-
ductance peak spectrum (a) and amplitude (b) calculated
as a function of interdot charging for the ideal structure
discussed above. We have scanned the value of interdot
charging from 0 meV up to the value of intradot charging
of U=5 meV. Neither the locus nor the amplitude of the
first conductance peak change, since the addition and ex-
traction of the first electron into and out of the system
does not involve any interdot charging energy.
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FIG. 5. (a) Conductance peak spectrum as a function of
interdot charging W. First peak is unchanged, fourth peak
changes linearly with interdot charging. (b) Amplitudes of
conductance peaks. Dashed line corresponds to peaks 1 and
4 in (a). Peaks 2 and 3 (solid line) increase until all four
peaks have the same amplitude at W=U where interdot and
intradot charging energies are the same.

The locus of the second conductance peak becomes
separated (almost) linearly from the first conductance
peak as the interdot charging is increased linearly since
the eigenenergies of the dominant?® Slater determinants
11,0,0,1) and |0,1,1,0) are 2¢+W. The two Slater de-
terminants |1,1,0,0) and [0,0,1,1) have eigenenergies
of 2¢+U. The strength of their mixture into the two-
particle ground state increases with the decrease in U~-W.
Since [1,1,0,0) and |0,0,1,1) are the states that allow
for transport through the structure, as discussed above
for the state |1,1,0,0), we expect the conductance to in-
crease with an increased mixture of these basis states into
the ground state. ‘

The spatial separation of charges into different quan-
tum dots (]1,0,0,1),]0,1,1,0)) is energetically not prefer-
able anymore once the limit of W =U is reached. Indeed
the degeneracies of the coupled dot eigenstate develop
such that the first and the second conductance peaks
have the same amplitude in this limit. The loci of the
third and fourth conductance peaks separate themselves
from the previous peak with the same proportionality
to interdot charging. The amplitude of the third and
fourth conductance peaks can be explained in the same
fashion as for the first and second peaks by electron-hole
symmetry.24

Notice that the double set of twin peaks is preserved
even when interdot charging is included in the model.
However, note that the separation of the conductance
peaks does contain some information about the interdot
charging energy. The energy difference between the first
two and the last two peaks cannot be identified with the
interdot coupling ¢. Similarly, the separation between the
two sets of peaks cannot be identified with the intradot
charging energy U.

D. Multiple lateral states with off-diagonal
' interactions

We now consider the influence of multiple lateral states
on the conductance spectrum of the coupled quantum
dots. The lateral confinement determines the single-
particle energy quantization in the lateral dimensions.
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Strong confinements resulting in level separations of
AE=30—50 meV have been observed.'??5 These values
are larger than the observed!*® single-electron charging
energies which are of the order of 0.5—5 meV. If the lat-
eral energy quantization AFE is comparable?6:27:15 to the
charging energies U and the coupling ¢, we expect the
excited lateral states to be mixed into the ground states
of the coupled system. This would destroy the appear-
ance of a double set of twin peaks in the conductance
spectrum discussed above. The basic questions we try to
answer in this section are the following. (1) How strong
does the confinement have to be, such that the double set
of twin peaks is not destroyed by the mixing in of higher
lateral states? (2) Does the off-diagonal character of the
exchange terms in the Hamiltonian have any influence on
the symmetry of the twin peaks which are induced by the
off-diagonal interdot coupling?

Calculations of the many-body states of single and
coupled®* quantum dots have been performed. They
mostly differ by their choice of interaction potential,
V(¥1—72), and the number of particles included in the
system. Since we are interested in the N-particle ground
states given relatively strong confinement we restrict our-
selves to the lowest lateral single-particle modes in the
system and include as many particles as these states
can hold. In order to estimate single-particle eigenen-
ergies and charging energies we consider a model sys-
tem of a single rectangular quantum dot with hard
walls®® and vary the lateral width of the quantum dot
(ds = dy). We consider the three lowest single-particle
eigenstates described by their lateral quantum number
(nzymy): (1,1) =1, (2,1) -2, and (1,2) — 3, and num-
ber them 1,2,3. We assume the longitudinal or transport
dimension to be much smaller than the lateral counfine-
ment (d, =50 A) and consider only the ground state in
that dimension (n, = 1). Using this simple model we
calculate the interaction energies

28—33

Usnpq = / divdity V(7 —73) 6% (7)
X¢p(72) &p (F2) bp(71) , (4)

which appear in the Hamiltonian.

By symmetry in the given limited set of basis states
one can show that all other interaction energies but
Uiinmns Ummnn, 30d Upnnm are zero. In particular we
are left with the direct integrals Vil =U1111, V}z =U2222,
Vi2a = Ui221 = Uz112 = U131 = Uz112, and Vzzq = Uzzzz =
U3223, and the exchange integrals V]_ze = U1212 = U2121 =
Uii2e = Uzz11 = Uisiz = Usiza = Unizs = Ussiz and
Vasze = Uzsza = Usasz = Uszzaz = Usszz. We have used
three different interaction potentials, the unscreened?®2°

Coulomb potential f;e- 57‘1%*7}’ the saturated32:3¢ Coulomb

potential 4%% \/—Tr_l—_;j———_m, and the screened Coulomb po-
tential 3%33(—?;%;—"‘-'@ for comparison. Figure 6(a)
depicts the four direct charging energies, the two ex-
change energies, and the single-particle excitation energy
AE =FEy—E; =E3—E; for the unscreened Coulomb po-
tential. As a relative measure we also depicted the single-
particle excitation energy of the next lowest lateral single-



30 CONDUCTANCE SPECTROSCOPY IN COUPLED QUANTUM DOTS

particle state, AEneq1=FEp, =3n,=2 — E1, which has been

neglected in our calculation here. The single-particle ex-_
citation energies show the well known 1/d2 dependence,
whereas the charging energies in Fig. 6(a) show a weaker

dependence on the lateral dimension. As long as the
single-particle excitation energy AE = E; —E) is signif-

icantly larger than the charging energies we expect the

mixing of the higher lateral states into the ground state of
the two-particle ground state for the single quantum dot

to be weak. For a coupled dot system we would therefore

expect the double set of twin peaks to survive certainly

for d, <300 A [Fig. 6(a)].
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FIG. 6. Direct (Vi1, Vaa, Viza, Vasq) and exchange (Vize,
Vas.) Coulomb integrals and single-particle excitation energies
AE =F2—F; and AE,g as a function of lateral confinement
d, = dy for (a) unscreened Coulomb potential, (b) saturated
Coulomb potential (o = 200 A), and (c) screened Coulomb

potential (=50 &).

2321

The charging energies for small quantum dots depicted
in Fig. 6(a) are of the order of 15 meV, which are larger
than the charging energies that have been observed'%'s
so far in single quantum dots (0.5—5 meV). A screening

" length of =200 A in the saturated Coulomb potential

reduces the charging energies down to the experimental
level of about 5 meV as depicted in Fig. 6(b), where the
length of 200 A corresponds to the average distance away
from the large carrier densities in the emitter and collec-
tor which could be considered as ground planes. Given
these reduced charging energies we expect that the quan-
tum dot can be much wider now without mixing of the
higher lateral states into the 1—4-particle ground states.
The region of “allowed” quantum dot size is extended to
at least d, = 600 A in this simple model. Notice that
the exchange energies are significantly smaller than the
direct energies for this choice of potential.

Using the exponentially screened potential with 3=>50
A we obtain the charging energies depicted in Fig. 6(c).
Notice that the exchange terms are comparable to the
direct terms and become identical to their corresponding
direct term for large cross sections. This indicates that
the charging energies between electrons of the same spin

" in different orbitals are negligible for large cross sections.

‘In view of the differences in the interaction energies for

_different models fo'r*'the Coulomb interaction, we would
expect the conductance spectra to be different too. Fig-

ures 7(a) and 7(b) show the conductance spectra for
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FIG. 7. Conductance spectrum calculated with e = 30
meV, t=1 meV, kpT =0.1 meV, and the interaction energies
calculated with the saturated Coulomb potential [Fig. 6(b)]
for two different quantum dot sizes (a) d; =d, =550 A and

(b) dy=d, =750 A.
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de =d, =550 A and for d, =d, =750 & correspond-
ing to the saturated Coulomb potential [Fig. 6(b)]. The
lowest set of twin peaks is clearly decoupled from the
upper peaks arising from the higher lateral modes even
for a quantum dot dimension as large as 750 A. But
when we use the screened Coulomb potential [Fig. 6(c)]
we find that, although the decoupling is quite clear at
d. =d, =550 A, it is not as clear for d, = d, =750 A
[Figs. 8(a) and 8(b)]. We also find that if we set the ex-
change terms in the interaction to zero, the higher peaks
are affected but the lowest set of twin peaks is left un-
changed.

Figures 9(a) and 9(b) show the conductance spectra
calculated using the unscreened Coulomb potential. In
this case, too, the lowest set of twin peaks is clearly re-
solved at low temperatures (kg7 <« t). But at higher tem-
peratures, the symmetry of this set of twin peaks is signif-
icantly affected for the large quantum dot (d, =d, =750
A). We attribute this to the mixing of the lateral states
2 and 3 into the three- and four-particle states close to
the the ground state. The temperature dependence is
nontrivial and reflects the occupation of excited states
in the coupled dot system, which all have quite different
couplings to the leads. It is interesting to note that the
fifth and sixth peaks for the d, = d, = 750 A case are
extremely weak. We find that if we set the exchange en-
ergies to zero in our calculation these two peaks become

L B e B o

L

LRI LN A A L L S B O

IRV PPN TTE RN

ol ||lllltL I.u-

30
. Dl\l|il_rl‘rl‘1'l‘[ll'l17!‘Ill|!lll
0 T N S SR R M*

Fermi Energy (meV)

G
<
<o
T T e
e L bl L L e

FIG. 8. Conductance spectrum calculated with ¢; = 30
meV, t=1 meV, kp7' =0.1 meV, and the interaction energies
calculated with the screened Coulomb potential [Fig. 6(c)] for
two different quantum dot sizes (a) do =dy =550 A and (b)
do=dy, =750 A.
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comparable to peaks 7—12. As we have already noted
above, the inclusion of the exchange term does affect the
upper part of the spectrum though it has little effect on
the lowest set of twin peaks.

Given the uncertainty in the actual nature of the
screening and confinement potentials, our main conclu-
sion in this section is that we expect the double set of
twin peaks to survive against the mixing in of higher lat-
eral states for quantum dot dimensions up to x=750 A.35
Screening of the Coulomb interaction leads to lower in-
teraction energies and therefore increases the size of the
quantum dot for which we expect higher lateral states
not to affect the lower set of twin peaks. The exchange
terms in the interaction affect the upper part of the con-
ductance spectra but have no effect on the lowest set of
twin peaks.

E. Inelastic scattering

We can account for strong inelastic scattering by using
the following expression for G instead of Eq. (2):
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FIG. 9. Conductance spectrum calculated with ¢y = 30
meV, £ = 1 meV, and the interaction energies calculated
with thé pure Coulomb potential [Fig. 6(a)] for two differ-
ent quantum dot sizes (a) dr = dy =550 A, The double set
of twin peaks is well separated from peaks 512 and symme-
try between the two sets persists for high temperatures. (b)
de = dy = 750 A. Conductance still shows a double set of
“twin” peaks at low temperature but the high temperature
calculations show the broken symmetry of peaks 1 and 4 and
peaks 2 and 3 due to mixing in of higher lateral states.



where

(TERY) = S TH Feg(Bniln)
i

X [1=f(Eni — Bn_15 — )], (62)
Pe =Y P, (6b)
1 B
Feq(Brnjiln) = Zexp (—— kBT> , (6¢c)

E'n.i
Z, = Zexp (-—ka> . (6d)

This formula is essentially the same as that derived by
Beenakker!? for single quantum dots. The main differ-
ence is that the coupling terms I'“(®) have been modi-
fied to account for the nature of the electronic states in
coupled quantum dots. The effect of inelastic scattering
in linear response is to thermally average all transitions
through the left and the right barrier [Eq. (6a)] for the
subset of constant number of electrons, n, in the quantum
dot. Feq(Fn,:|n) is the canonical distribution function in-
dicating the conditional probability of state (n,{) being
occupied, given n electrons in the system.

The two conductance formulas in Egs. (2) and (5)
give the same!® result under two independent condi-
tions if (1) TL,;/TE; = const,V¥(nij), or (2) kaT <
B, excited — Fn ground- For the nonidealities we have con-
sidered in this paper condition (1) is only violated in
the case of detuning. Detuning introduces an asymme-
try into the eigenstates of the system such that the ratio
of left lead to right lead coupling becomes state depen-

dent. We find that the amplitudes of the conductance .

peaks do change due to inclusion of inelastic scattering;
however, the general shape of the conductance peaks does
not change in the case of kT ~t. The features due to
interdot coupling ¢ will be thermally broadened and can-
not be resolved in this limit. Since we are interested in
resolving features of energy scale t, we require temper-
atures with k3T < ¢t and Eqs. (2) and (5) will give the
same results [condition (2) from above].
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IV. CONCLUSIONS

‘We have presented calculations of conductance spectra
for two strongly coupled quantum dots that are weakly
coupled to the adjoining leads. The conductance spec-
trum due to the first four electrons consists of a double
set of twin peaks. The location of the conductance peaks
coincides with transitions in the total number of elec-
trons in the quantum dot. However, the peak amplitude
is strongly dependent on the spatial properties of the
many-body states in the quantum dots and varies from
one peak to another although %%Z is the same for every
transition. We analyze the effect of experimental nonide-
alities such as quantum dot detuning, interdot charging,
multiple lateral states with off-diagonal interactions, and
inelastic scattering on the conductance spectrum. We
find that the spectrum is altered due to the first three
effects, but the qualitative features persist. We suggest
that in an experiment the interdot coupling be made suf-
ficiently strong such that detuning due to variations in
confinement does not decrease the amplitudes of the con-
ductance peaks significantly. We find that interdot charg-
ing as well as inelastic scattering have little effect on the
spectrum. We show that for quantum dot dimensions®®
<750 A higher lateral states do not change the symme-
try of the lower conductance peaks, which consists of a
double set of twin peaks as expected for the ideal struc-
ture. This lower part of the spectrum is unaffected by
the choice of interaction potentials, exchange terms, etc.,
although the upper part of the spectrum (due to higher
lateral modes) is strongly influenced by these details.
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